Copied to
clipboard

?

G = C4×C22.F5order 320 = 26·5

Direct product of C4 and C22.F5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4×C22.F5, C209M4(2), Dic58M4(2), Dic5.14C42, C53(C4×M4(2)), C22.5(C4×F5), C23.39(C2×F5), (C22×C4).11F5, (C22×C20).33C4, (C2×C10).21C42, C10.18(C2×C42), (C4×Dic5).48C4, C2.6(D5⋊M4(2)), C10.24(C2×M4(2)), C10.C4217C2, C22.44(C22×F5), Dic5.37(C22×C4), (C22×Dic5).30C4, (C4×Dic5).325C22, (C2×Dic5).341C23, (C22×Dic5).269C22, C5⋊C83(C2×C4), (C4×C5⋊C8)⋊17C2, C2.18(C2×C4×F5), (C2×C5⋊C8).36C22, (C2×C4).104(C2×F5), (C2×C4×Dic5).51C2, (C2×C20).104(C2×C4), C2.2(C2×C22.F5), (C2×C22.F5).7C2, (C2×C10).57(C22×C4), (C22×C10).57(C2×C4), (C2×Dic5).128(C2×C4), SmallGroup(320,1088)

Series: Derived Chief Lower central Upper central

C1C10 — C4×C22.F5
C1C5C10Dic5C2×Dic5C2×C5⋊C8C2×C22.F5 — C4×C22.F5
C5C10 — C4×C22.F5

Subgroups: 378 in 142 conjugacy classes, 74 normal (30 characteristic)
C1, C2 [×3], C2 [×2], C4 [×2], C4 [×8], C22, C22 [×2], C22 [×2], C5, C8 [×8], C2×C4 [×2], C2×C4 [×12], C23, C10 [×3], C10 [×2], C42 [×4], C2×C8 [×4], M4(2) [×8], C22×C4, C22×C4 [×2], Dic5 [×6], Dic5, C20 [×2], C20, C2×C10, C2×C10 [×2], C2×C10 [×2], C4×C8 [×2], C8⋊C4 [×2], C2×C42, C2×M4(2) [×2], C5⋊C8 [×8], C2×Dic5 [×4], C2×Dic5 [×4], C2×Dic5 [×2], C2×C20 [×2], C2×C20 [×2], C22×C10, C4×M4(2), C4×Dic5 [×4], C2×C5⋊C8 [×4], C22.F5 [×8], C22×Dic5 [×2], C22×C20, C4×C5⋊C8 [×2], C10.C42 [×2], C2×C4×Dic5, C2×C22.F5 [×2], C4×C22.F5

Quotients:
C1, C2 [×7], C4 [×12], C22 [×7], C2×C4 [×18], C23, C42 [×4], M4(2) [×4], C22×C4 [×3], F5, C2×C42, C2×M4(2) [×2], C2×F5 [×3], C4×M4(2), C4×F5 [×2], C22.F5 [×2], C22×F5, D5⋊M4(2), C2×C4×F5, C2×C22.F5, C4×C22.F5

Generators and relations
 G = < a,b,c,d,e | a4=b2=c2=d5=1, e4=c, ab=ba, ac=ca, ad=da, ae=ea, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=d3 >

Smallest permutation representation
On 160 points
Generators in S160
(1 78 121 18)(2 79 122 19)(3 80 123 20)(4 73 124 21)(5 74 125 22)(6 75 126 23)(7 76 127 24)(8 77 128 17)(9 116 160 44)(10 117 153 45)(11 118 154 46)(12 119 155 47)(13 120 156 48)(14 113 157 41)(15 114 158 42)(16 115 159 43)(25 49 60 40)(26 50 61 33)(27 51 62 34)(28 52 63 35)(29 53 64 36)(30 54 57 37)(31 55 58 38)(32 56 59 39)(65 146 102 91)(66 147 103 92)(67 148 104 93)(68 149 97 94)(69 150 98 95)(70 151 99 96)(71 152 100 89)(72 145 101 90)(81 106 130 137)(82 107 131 138)(83 108 132 139)(84 109 133 140)(85 110 134 141)(86 111 135 142)(87 112 136 143)(88 105 129 144)
(1 121)(2 126)(3 123)(4 128)(5 125)(6 122)(7 127)(8 124)(9 156)(10 153)(11 158)(12 155)(13 160)(14 157)(15 154)(16 159)(17 73)(18 78)(19 75)(20 80)(21 77)(22 74)(23 79)(24 76)(25 60)(26 57)(27 62)(28 59)(29 64)(30 61)(31 58)(32 63)(33 54)(34 51)(35 56)(36 53)(37 50)(38 55)(39 52)(40 49)(41 113)(42 118)(43 115)(44 120)(45 117)(46 114)(47 119)(48 116)(65 102)(66 99)(67 104)(68 101)(69 98)(70 103)(71 100)(72 97)(81 130)(82 135)(83 132)(84 129)(85 134)(86 131)(87 136)(88 133)(89 152)(90 149)(91 146)(92 151)(93 148)(94 145)(95 150)(96 147)(105 140)(106 137)(107 142)(108 139)(109 144)(110 141)(111 138)(112 143)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)(65 69)(66 70)(67 71)(68 72)(73 77)(74 78)(75 79)(76 80)(81 85)(82 86)(83 87)(84 88)(89 93)(90 94)(91 95)(92 96)(97 101)(98 102)(99 103)(100 104)(105 109)(106 110)(107 111)(108 112)(113 117)(114 118)(115 119)(116 120)(121 125)(122 126)(123 127)(124 128)(129 133)(130 134)(131 135)(132 136)(137 141)(138 142)(139 143)(140 144)(145 149)(146 150)(147 151)(148 152)(153 157)(154 158)(155 159)(156 160)
(1 159 36 83 65)(2 84 160 66 37)(3 67 85 38 153)(4 39 68 154 86)(5 155 40 87 69)(6 88 156 70 33)(7 71 81 34 157)(8 35 72 158 82)(9 103 54 122 133)(10 123 104 134 55)(11 135 124 56 97)(12 49 136 98 125)(13 99 50 126 129)(14 127 100 130 51)(15 131 128 52 101)(16 53 132 102 121)(17 63 90 114 138)(18 115 64 139 91)(19 140 116 92 57)(20 93 141 58 117)(21 59 94 118 142)(22 119 60 143 95)(23 144 120 96 61)(24 89 137 62 113)(25 112 150 74 47)(26 75 105 48 151)(27 41 76 152 106)(28 145 42 107 77)(29 108 146 78 43)(30 79 109 44 147)(31 45 80 148 110)(32 149 46 111 73)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152)(153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,78,121,18)(2,79,122,19)(3,80,123,20)(4,73,124,21)(5,74,125,22)(6,75,126,23)(7,76,127,24)(8,77,128,17)(9,116,160,44)(10,117,153,45)(11,118,154,46)(12,119,155,47)(13,120,156,48)(14,113,157,41)(15,114,158,42)(16,115,159,43)(25,49,60,40)(26,50,61,33)(27,51,62,34)(28,52,63,35)(29,53,64,36)(30,54,57,37)(31,55,58,38)(32,56,59,39)(65,146,102,91)(66,147,103,92)(67,148,104,93)(68,149,97,94)(69,150,98,95)(70,151,99,96)(71,152,100,89)(72,145,101,90)(81,106,130,137)(82,107,131,138)(83,108,132,139)(84,109,133,140)(85,110,134,141)(86,111,135,142)(87,112,136,143)(88,105,129,144), (1,121)(2,126)(3,123)(4,128)(5,125)(6,122)(7,127)(8,124)(9,156)(10,153)(11,158)(12,155)(13,160)(14,157)(15,154)(16,159)(17,73)(18,78)(19,75)(20,80)(21,77)(22,74)(23,79)(24,76)(25,60)(26,57)(27,62)(28,59)(29,64)(30,61)(31,58)(32,63)(33,54)(34,51)(35,56)(36,53)(37,50)(38,55)(39,52)(40,49)(41,113)(42,118)(43,115)(44,120)(45,117)(46,114)(47,119)(48,116)(65,102)(66,99)(67,104)(68,101)(69,98)(70,103)(71,100)(72,97)(81,130)(82,135)(83,132)(84,129)(85,134)(86,131)(87,136)(88,133)(89,152)(90,149)(91,146)(92,151)(93,148)(94,145)(95,150)(96,147)(105,140)(106,137)(107,142)(108,139)(109,144)(110,141)(111,138)(112,143), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)(156,160), (1,159,36,83,65)(2,84,160,66,37)(3,67,85,38,153)(4,39,68,154,86)(5,155,40,87,69)(6,88,156,70,33)(7,71,81,34,157)(8,35,72,158,82)(9,103,54,122,133)(10,123,104,134,55)(11,135,124,56,97)(12,49,136,98,125)(13,99,50,126,129)(14,127,100,130,51)(15,131,128,52,101)(16,53,132,102,121)(17,63,90,114,138)(18,115,64,139,91)(19,140,116,92,57)(20,93,141,58,117)(21,59,94,118,142)(22,119,60,143,95)(23,144,120,96,61)(24,89,137,62,113)(25,112,150,74,47)(26,75,105,48,151)(27,41,76,152,106)(28,145,42,107,77)(29,108,146,78,43)(30,79,109,44,147)(31,45,80,148,110)(32,149,46,111,73), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160)>;

G:=Group( (1,78,121,18)(2,79,122,19)(3,80,123,20)(4,73,124,21)(5,74,125,22)(6,75,126,23)(7,76,127,24)(8,77,128,17)(9,116,160,44)(10,117,153,45)(11,118,154,46)(12,119,155,47)(13,120,156,48)(14,113,157,41)(15,114,158,42)(16,115,159,43)(25,49,60,40)(26,50,61,33)(27,51,62,34)(28,52,63,35)(29,53,64,36)(30,54,57,37)(31,55,58,38)(32,56,59,39)(65,146,102,91)(66,147,103,92)(67,148,104,93)(68,149,97,94)(69,150,98,95)(70,151,99,96)(71,152,100,89)(72,145,101,90)(81,106,130,137)(82,107,131,138)(83,108,132,139)(84,109,133,140)(85,110,134,141)(86,111,135,142)(87,112,136,143)(88,105,129,144), (1,121)(2,126)(3,123)(4,128)(5,125)(6,122)(7,127)(8,124)(9,156)(10,153)(11,158)(12,155)(13,160)(14,157)(15,154)(16,159)(17,73)(18,78)(19,75)(20,80)(21,77)(22,74)(23,79)(24,76)(25,60)(26,57)(27,62)(28,59)(29,64)(30,61)(31,58)(32,63)(33,54)(34,51)(35,56)(36,53)(37,50)(38,55)(39,52)(40,49)(41,113)(42,118)(43,115)(44,120)(45,117)(46,114)(47,119)(48,116)(65,102)(66,99)(67,104)(68,101)(69,98)(70,103)(71,100)(72,97)(81,130)(82,135)(83,132)(84,129)(85,134)(86,131)(87,136)(88,133)(89,152)(90,149)(91,146)(92,151)(93,148)(94,145)(95,150)(96,147)(105,140)(106,137)(107,142)(108,139)(109,144)(110,141)(111,138)(112,143), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(97,101)(98,102)(99,103)(100,104)(105,109)(106,110)(107,111)(108,112)(113,117)(114,118)(115,119)(116,120)(121,125)(122,126)(123,127)(124,128)(129,133)(130,134)(131,135)(132,136)(137,141)(138,142)(139,143)(140,144)(145,149)(146,150)(147,151)(148,152)(153,157)(154,158)(155,159)(156,160), (1,159,36,83,65)(2,84,160,66,37)(3,67,85,38,153)(4,39,68,154,86)(5,155,40,87,69)(6,88,156,70,33)(7,71,81,34,157)(8,35,72,158,82)(9,103,54,122,133)(10,123,104,134,55)(11,135,124,56,97)(12,49,136,98,125)(13,99,50,126,129)(14,127,100,130,51)(15,131,128,52,101)(16,53,132,102,121)(17,63,90,114,138)(18,115,64,139,91)(19,140,116,92,57)(20,93,141,58,117)(21,59,94,118,142)(22,119,60,143,95)(23,144,120,96,61)(24,89,137,62,113)(25,112,150,74,47)(26,75,105,48,151)(27,41,76,152,106)(28,145,42,107,77)(29,108,146,78,43)(30,79,109,44,147)(31,45,80,148,110)(32,149,46,111,73), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152)(153,154,155,156,157,158,159,160) );

G=PermutationGroup([(1,78,121,18),(2,79,122,19),(3,80,123,20),(4,73,124,21),(5,74,125,22),(6,75,126,23),(7,76,127,24),(8,77,128,17),(9,116,160,44),(10,117,153,45),(11,118,154,46),(12,119,155,47),(13,120,156,48),(14,113,157,41),(15,114,158,42),(16,115,159,43),(25,49,60,40),(26,50,61,33),(27,51,62,34),(28,52,63,35),(29,53,64,36),(30,54,57,37),(31,55,58,38),(32,56,59,39),(65,146,102,91),(66,147,103,92),(67,148,104,93),(68,149,97,94),(69,150,98,95),(70,151,99,96),(71,152,100,89),(72,145,101,90),(81,106,130,137),(82,107,131,138),(83,108,132,139),(84,109,133,140),(85,110,134,141),(86,111,135,142),(87,112,136,143),(88,105,129,144)], [(1,121),(2,126),(3,123),(4,128),(5,125),(6,122),(7,127),(8,124),(9,156),(10,153),(11,158),(12,155),(13,160),(14,157),(15,154),(16,159),(17,73),(18,78),(19,75),(20,80),(21,77),(22,74),(23,79),(24,76),(25,60),(26,57),(27,62),(28,59),(29,64),(30,61),(31,58),(32,63),(33,54),(34,51),(35,56),(36,53),(37,50),(38,55),(39,52),(40,49),(41,113),(42,118),(43,115),(44,120),(45,117),(46,114),(47,119),(48,116),(65,102),(66,99),(67,104),(68,101),(69,98),(70,103),(71,100),(72,97),(81,130),(82,135),(83,132),(84,129),(85,134),(86,131),(87,136),(88,133),(89,152),(90,149),(91,146),(92,151),(93,148),(94,145),(95,150),(96,147),(105,140),(106,137),(107,142),(108,139),(109,144),(110,141),(111,138),(112,143)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64),(65,69),(66,70),(67,71),(68,72),(73,77),(74,78),(75,79),(76,80),(81,85),(82,86),(83,87),(84,88),(89,93),(90,94),(91,95),(92,96),(97,101),(98,102),(99,103),(100,104),(105,109),(106,110),(107,111),(108,112),(113,117),(114,118),(115,119),(116,120),(121,125),(122,126),(123,127),(124,128),(129,133),(130,134),(131,135),(132,136),(137,141),(138,142),(139,143),(140,144),(145,149),(146,150),(147,151),(148,152),(153,157),(154,158),(155,159),(156,160)], [(1,159,36,83,65),(2,84,160,66,37),(3,67,85,38,153),(4,39,68,154,86),(5,155,40,87,69),(6,88,156,70,33),(7,71,81,34,157),(8,35,72,158,82),(9,103,54,122,133),(10,123,104,134,55),(11,135,124,56,97),(12,49,136,98,125),(13,99,50,126,129),(14,127,100,130,51),(15,131,128,52,101),(16,53,132,102,121),(17,63,90,114,138),(18,115,64,139,91),(19,140,116,92,57),(20,93,141,58,117),(21,59,94,118,142),(22,119,60,143,95),(23,144,120,96,61),(24,89,137,62,113),(25,112,150,74,47),(26,75,105,48,151),(27,41,76,152,106),(28,145,42,107,77),(29,108,146,78,43),(30,79,109,44,147),(31,45,80,148,110),(32,149,46,111,73)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152),(153,154,155,156,157,158,159,160)])

Matrix representation G ⊆ GL8(𝔽41)

320000000
032000000
00100000
00010000
000040000
000004000
000000400
000000040
,
400000000
01000000
00100000
0016400000
00001000
00000100
00000010
00000001
,
400000000
040000000
004000000
000400000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
00000100
0000403400
0000384034
000083277
,
040000000
320000000
0016390000
0030250000
0000171610
0000171601
000010312425
00001982425

G:=sub<GL(8,GF(41))| [32,0,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,16,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,40,3,8,0,0,0,0,1,34,8,32,0,0,0,0,0,0,40,7,0,0,0,0,0,0,34,7],[0,32,0,0,0,0,0,0,40,0,0,0,0,0,0,0,0,0,16,30,0,0,0,0,0,0,39,25,0,0,0,0,0,0,0,0,17,17,10,19,0,0,0,0,16,16,31,8,0,0,0,0,1,0,24,24,0,0,0,0,0,1,25,25] >;

56 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G···4N4O4P4Q4R 5 8A···8P10A···10G20A···20H
order1222224444444···4444458···810···1020···20
size1111221111225···510101010410···104···44···4

56 irreducible representations

dim11111111122444444
type++++++++-
imageC1C2C2C2C2C4C4C4C4M4(2)M4(2)F5C2×F5C2×F5C22.F5C4×F5D5⋊M4(2)
kernelC4×C22.F5C4×C5⋊C8C10.C42C2×C4×Dic5C2×C22.F5C4×Dic5C22.F5C22×Dic5C22×C20Dic5C20C22×C4C2×C4C23C4C22C2
# reps122124162244121444

In GAP, Magma, Sage, TeX

C_4\times C_2^2.F_5
% in TeX

G:=Group("C4xC2^2.F5");
// GroupNames label

G:=SmallGroup(320,1088);
// by ID

G=gap.SmallGroup(320,1088);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,477,100,136,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^2=c^2=d^5=1,e^4=c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽